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Abstract—Traditional system architectures were never de-
signed for the mix of application tasks that are now demanded 
of them. Composable Disaggregated Infrastructure (CDI) intro-
duces a new distributed system architecture for the dynamic 
compute systems that will train future AI/ML models and provide 
large-scale inference for organizations worldwide. By utilizing 
a high-performance, multi-path network fabric design, we can 
extend PCIe beyond the compute node – and the compute rack
– to provide configurable, efficient row-scale computing solutions
for the data centers of tomorrow.

I. INTRODUCTION

While Artificial I ntelligence ( AI) a nd M achine Learning 
(ML) have made great strides in computing outcomes trans-
forming every industry, AI/ML adoption has introduced new 
challenges in system efficiency. AI/ML has brought large scale 
“capability” computing to the masses, an area traditionally 
confined t o s cientific ap plications wi th hi ghly specialized 
users. Capability computing concentrates on solving limited 
numbers of very large problems. This contrasts with “capacity” 
computing that focuses on solving large numbers of simple 
problems. The difference in training a Large Language Model 
(LLM) and completing millions of web searches outlines the 
challenges of capability computing over capacity computing.

System models have been designed for traditional capacity 
computing, assuming that many jobs can be assigned to a sin-
gle compute “node/server” in a system. Capability computing 
requires rethinking architectures as multiple nodes are instead 
assigned to a single problem. Using multiple nodes to solve 
a problem creates new challenges. Reserving compute nodes 
for large problems dedicates those resources to the task. CPUs 
are reserved alongside GPUs for the entire job execution. 
This results in inefficiencies in the overall system as resources 
are underutilized during job execution. The fact that the vast 
majority of codes do not use CPUs and GPUs simultaneously 
for computing further extends this inefficiency.

The current state-of-the-art in capability computing systems 
rely on “homogeneous-heterogeneous” systems. The node 
architecture that is homogeneous in the large system is 
CPU-based, with accelerators (typically GPUs) providing 
the heterogeneous nature of the system. As the economics of 
specialized accelerator hardware are flipping to favor 
specialization [1], this places stress on this traditional system 
model. Adding specialized accelerators does not need to be 
universal to all of the compute nodes, but instead many kinds 
of accelerators are now needed.

Therefore, the current node architecture of our large
capability-class systems is producing inefficiencies that cre-
ate idle hardware, hardware trapped by reservations that are
unused, and inefficiencies in the data center in powering and
cooling the underutilized resources. Many of these inefficien-
cies are difficult to remove in the current node architecture
model as hardware becomes physically “trapped” in nodes
without being fully utilized, but we cannot assign other tasks
to that hardware without slowing down the main critical task,
such as training an LLM.

II. A NEW ROW-SCALE SYSTEM ARCHITECTURE

Existing approaches can help address the problem of inef-
ficient hardware allocation and “trapped” hardware. Disaggre-
gated system solutions such as PCIe extension technologies
allow us to build rack-level hardware sharing. Unfortunately,
PCIe does not scale well past the rack level. The non-lossy
nature of PCIe communication combined with PCIe root
complex architecture and backwards compatibility mean that
it is not designed for large scale hardware communication.
Growing a system too large with PCIe leads to significant
performance costs (e.g. when recovering from losing PCIe data
on the wire).

While PCIe can help solve the efficiency problem within
the rack, AI/ML, large LLMs and the growing use of massive
engineering simulation models require solutions that solve
the problem at a larger scale. Composable Disaggregated
Infrastructure (CDI), scaling to an entire row or compute
racks (a few dozen racks per row), can maximize efficiency
and utilization while enabling us to build systems that would
otherwise be impossible with traditional server hardware.

III. FLEXIBILITY

CDI takes the approach that the PCIe bus can be extended
over a high-performance network fabric that provides end-
to-end reliability and excellent latency and bandwidth. With
these capabilities, systems can be composed at job runtime
with large numbers of accelerators that would be impossible to
install in a typical system with physical limits to the number of
PCIe slots that can be engineered into them. In addition, CDI
allows us to reconfigure accelerators on the fly, releasing or
adding hardware based on the workload. There are challenges
to this allocation of hardware to ensure that resources are
available when needed, but CDI makes it possible and practical



Fig. 1: A disaggregated row-scale fabric and chassis example

to design a scheduling system that makes dynamic use of
system hardware at row-scale.

CDI utilizes a high-performance network fabric to provide
the linkage between a compute server with a CPU and the
accelerators/GPUs that it wishes to use. (See Figure 1.) A
single CPU server can have dozens of GPUs attached to it at
a time. These GPUs are not located in another compute server,
but instead are located in PCIe chassis placed throughout the
system. These chassis hold many GPUs at a time and can be
connected to servers on an on-demand basis. Once attached
through the network with the compute server, GPUs appear as
if they are local to the server. However, they share a remote
PCIe root complex solution that allows them to communicate
with each other without having to flow messages back through
the attached compute server.

IV. PHYSICAL PROXIMITY YIELDS PERFORMANCE

The benefits to row-scale disaggregation extend beyond
system flexibility and efficient utilization of hardware. There
is a performance advantage to placing accelerator hardware
physically close to each other. By designing and placing PCIe
devices in chassis, communications between large numbers of
GPUs are now local. This is important as up to 70% of the
time of AI/ML tasks can be consumed in GPU communication.
The type of communication used is typically “collective”
communication, where all of the software processes in a job
must communicate with each other. These normally take the
form of large reductions of data and distribution of the result
to all job participants. These types of collectives are called
“allreduce” collectives, although many other types are popular
and in common use. They all share the same characteristics
of all processes needing to participate in a data exchange.

By relocating GPUs into a single chassis, the time to
communicate is significantly reduced. In current systems, these
communications are limited to 4 up to a maximum of 8 GPUs
locally in a system and then need to use the system network to
communicate between compute nodes and with other GPUs.
The PCIe chassis increases this number of local GPUs by 4X-
8X, increasing overall communication efficiency.

Having multiple paths through the high-performance net-
work fabric gives us the flexibility to connect multiple chassis
and servers without worrying about interfering cross-traffic on
the network. We can use dedicated paths between the chassis
and compute nodes that can lead to performance predictability
as network congestion from other workloads or other chassis
in the same workloads can be avoided.

Of course, CDI is not free. There is a performance cost
to moving accelerator hardware out of the compute node
into a chassis, but it’s relatively minimal. Studies show the
cost of moving commands and data over the network to
a GPU is typically <1% [2]. This is easily mitigated by
tighter integration of the GPUs themselves into large locally
connected groups. Additionally, CDI allows jobs to start faster,
as they are no longer waiting for specialized servers. The
economic advantages of CDI also make a larger number of
GPUs available within the same budget, allowing more GPUs
to be applied to each job, further accelerating job completion
time.

V. ACHIEVING ECONOMIES OF SCALE

CDI has ramifications outside of system efficiency and
data center operating costs. The economics of the traditional
homogeneous-heterogeneous system require buying servers to
contain all of the PCIe slots for the accelerators needed.
To add new accelerators, you also need to purchase CPUs,
memory and (potentially) local storage to support that ac-
celerator purchase. This significantly increases the cost of
adding accelerator technologies to a data center. With a CDI
approach, adding new accelerators means adding compara-
tively inexpensive PCIe chassis and managing server/chassis
balance in system design. It also makes custom accelerators
more attractive to include in a system. As the purchase cost
of a new accelerator technology is mostly confined to the
accelerator itself, data centers can add capacity as needed
and not worry about keeping systems powered and cooled
for accelerators that are not 100% utilized. This changes
the economics of the specialized accelerator market, further
pushing down adoption costs and allowing easy adoption of
small numbers of specialized hardware units.
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